The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 2X+2 1 1 X 0 X 0 X 0 3X+2 2X+2 X+2 2 X 0 3X+2 2X 3X 2 3X+2 2 X 0 3X+2 2 2X+2 3X 3X+2 2X 3X 2X+2 3X+2 2X 2X+2 3X 0 2X 2X+2 3X+2 X 3X+2 0 0 2 0 2 2X+2 0 2X+2 2X 2X 2X+2 2 2X+2 2 2X 2X 0 0 0 2X+2 2 2X+2 2X 2X+2 2X 2 2X+2 2X+2 2X 2 2 2 0 2X 0 0 0 0 2X 2X 0 2X 2X 0 2X 0 2X 2X 0 2X 0 2X 0 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 2X 0 0 0 0 generates a code of length 35 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+121x^32+80x^33+237x^34+224x^35+165x^36+80x^37+74x^38+32x^40+9x^42+1x^60 The gray image is a code over GF(2) with n=280, k=10 and d=128. This code was found by Heurico 1.16 in 0.047 seconds.